Answer:
a) 0.9
b) Mean = 1.58
Standard Deviation = 0.89
Explanation:
We are given the following in the question:
A marketing firm is considering making up to three new hires.
Let X be the variable describing the number of hiring in the company.
Thus, x can take values 0,1 ,2 and 3.
![P(x\geq 2) = 50\%= 0.5\\P(x = 0) = 10\% = 0.1\\P(x = 3) = 18\% = 0.18](https://img.qammunity.org/2021/formulas/mathematics/college/uf2du05euf33z5dlh0ljegm6zck43kjass.png)
a) P(firm will make at least one hire)
![P(x\geq 2) = P(x=2) + P(x=3)\\0.5 = P(x=2) + 0.18\\ P(x=2) = 0.32](https://img.qammunity.org/2021/formulas/mathematics/college/i75r0wqewsnuedqzlxbsx2047q7rcfsvsd.png)
Also,
![P(x= 0) +P(x= 1) + P(x= 2) + P(x= 3) = 1\\ 0.1 + P(x= 1) + 0.32 + 0.18 = 1\\ P(x= 1) = 1- (0.1+0.32+0.18) = 0.4](https://img.qammunity.org/2021/formulas/mathematics/college/pmhindeyjgylo6r4ko42u7w010exe163ic.png)
![\text{P(firm will make at least one hire)}\\= P(x\geq 1)\\=P(x=1) + P(x=2) + P(x=3)\\ = 0.4 + 0.32 + 0.18 = 0.9](https://img.qammunity.org/2021/formulas/mathematics/college/oahbs0a9ri9o5mhkh4vwcldyoom8qtqqck.png)
b) expected value and the standard deviation of the number of hires.
![E(x^2) = \displaystyle\sum x_i^2P(x_i)\\=0(0.1) + 1(0.4) + 4(0.32) +9(0.18) = 3.3\\V(x) = E(x^2)-[E(x)]^2 = 3.3-(1.58)^2 = 0.80\\\text{Standard Deviation} = √(V(x)) = √(0.8036) = 0.89](https://img.qammunity.org/2021/formulas/mathematics/college/mk2chdzehavjw7ihnzntqbifh1hh4rkpeo.png)