96.6k views
1 vote
What is the absolute value of the complex number Negative 4 minus StartRoot 2 EndRoot i?

StartRoot 14 EndRoot
3 StartRoot 2 EndRoot
14
18

2 Answers

5 votes

Answer:

Explanation:


-4-√(2)i \\ absolute ~value=\sqrt{(-4)^2+(-√(2) )^2} =√(18)=3√(2 )

User Joe Winfield
by
5.0k points
0 votes

Answer : The absolute value of the given complex is,
3√(2)

Step-by-step explanation :

As we know that,

The complex number is, a + bi

The absolute value =
√(a^2+b^2)

Given :

The complex number
-4-√(2)i.

For this complex number:

a = -4

b =
-√(2)

Thus, the absolute value will be:


√(a^2+b^2)=\sqrt{(-4)^2+(-√(2))^2}=√(16+2)=√(18)=3√(2)

Thus, the absolute value of the given complex is,
3√(2)

User Raspayu
by
4.8k points