The height of container is 8 feet
Solution:
Let "w" be the width of container
Let "l" be the length of container
Let "h" be the height of container
The width of a container is 5 feet less than its height
Therefore,
width = height - 5
w = h - 5 ------ eqn 1
Its length is 1 foot longer than its height
length = 1 + height
l = 1 + h ---------- eqn 2
The volume of container is given as:
![v = length * width * height](https://img.qammunity.org/2021/formulas/mathematics/high-school/94yxeq424gchjodrjr0t6jteh0y2zdksn6.png)
Given that volume of the container is 216 cubic feet
![216 = l * w * h](https://img.qammunity.org/2021/formulas/mathematics/high-school/xkp1dcfym8mixsp9ryckuu3idymi3momdz.png)
Substitute eqn 1 and eqn 2 in above formula
![216 = (1 + h) * (h-5) * h\\\\216 = (h+h^2)(h-5)\\\\216 = h^2-5h+h^3-5h^2\\\\216 = h^3-4h^2-5h\\\\h^3-4h^2-5h-216 = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/4jxqgcirf4rjd030vv7rh23oouldf1161t.png)
Solve by factoring
![(h-8)(h^2+4h+27) = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/pvq10j529o9iuuljf0l6xck9zzumvq7xks.png)
Use the zero factor principle
If ab = 0 then a = 0 or b = 0 ( or both a = 0 and b = 0)
Therefore,
![h - 8 = 0\\\\h = 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/znu5u24vvfuht76wkhfdpndajm371j02ba.png)
Also,
![h^2+4h+27 = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/u8ssgojd1nhzqptzqej6d5yyskcxdmychs.png)
Solve by quadratic equation formula
![\text {For a quadratic equation } a x^(2)+b x+c=0, \text { where } a \\eq 0\\\\x=\frac{-b \pm \sqrt{b^(2)-4 a c}}{2 a}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/e2pgcarutnupn4kvqeyap9gp6blwyar34q.png)
![\mathrm{For\:} a=1,\:b=4,\:c=27:\quad h=(-4\pm √(4^2-4\cdot \:1\cdot \:27))/(2\cdot \:1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/b8xm071yqz5wlx2vkbfok3puuxrqnbvi1v.png)
![h = (-4+√(4^2-4\cdot \:1\cdot \:27))/(2)=(-4+√(92)i)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3pv28dgrcwmmnlu276uw2swwufu8qip13b.png)
Therefore, on solving we get,
![h=-2+√(23)i,\:h=-2-√(23)i](https://img.qammunity.org/2021/formulas/mathematics/high-school/rhgmo066hsub13y724jasn4ayhx9iz1xki.png)
Thus solutions of "h" are:
h = 8
![h=-2+√(23)i,\:h=-2-√(23)i](https://img.qammunity.org/2021/formulas/mathematics/high-school/rhgmo066hsub13y724jasn4ayhx9iz1xki.png)
"h" cannot be a imaginary value
Thus the solution is h = 8
Thus the height of container is 8 feet