Answer:
option B.
![x=38^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/uc78qordywymc68xdwq80nt1ragj6ozosl.png)
Explanation:
we know that
1) The two diagonals of a rhombus are perpendicular
2) The sum of the interior angles in any triangle must be equal to 180 degrees
Let
O ----> the intersection point of the diagonals of the rhombus
In the right triangle OAD
![x^o+(x+14)^o+90^o=180^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/t6ym251ekp9pw7dkm0a5i34bn5jijjf60r.png)
solve for x
![x^o+(x+14)^o=90^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/rrz9mil7q52lr7tkdjqqwto9og2x1x0xzu.png)
![2x=90^o-14^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/j6cvjevjn9ajc0rtk5z238umdbe1mmqic4.png)
![2x=76^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/uteami3jejal3wr4evt17ksk1n8ukcv8zd.png)
![x=38^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/uc78qordywymc68xdwq80nt1ragj6ozosl.png)