Answer:
(D) 9.893
Explanation:
Given:
The equation to solve is given as:
![3^(x-8)=8](https://img.qammunity.org/2021/formulas/mathematics/high-school/apwtyqomrvspzm2lbbxh4bi3xfkmtsye6q.png)
Since, the variable 'x' is in the exponent, we take log on both the sides.
Taking log to base 3 on both the sides, we get:
![\log_3 (3^(x-8))=\log_3 (8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i5u6e9upm0mt2c9z6zebdbb6vlgrvoh81l.png)
Using logarithmic property
![\log a^m=m\log a](https://img.qammunity.org/2021/formulas/mathematics/high-school/pjkthh2cl2m3v65x8jdrgap2xvfi0ki10k.png)
Therefore, the left hand side of the equation becomes;
![(x-8)\log_3 3=\log_3 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/kewcotwnecxlh58tqcw43h2fz4ddrlqt7c.png)
We know that,
![\log_a a=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/i4hgndziw9nuqyaakf9ll5vegc07xsn887.png)
![(x-8)* 1=\log_3 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/i7ycwm63pvll92otmxl3c41d829tnt3o4t.png)
![x-8=\log_3 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/25nlsbej9c9dtex52omrefg1m6bckcp00k.png)
Now, using the change of base property of log
, we get:
![x-8=(\log 8)/(\log 3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3ffmkrdxy1sqqsbkzfy5janw4640m77i9c.png)
Adding 8 on both sides, we get:
![x-8+8=(\log 8)/(\log 3)+8](https://img.qammunity.org/2021/formulas/mathematics/high-school/v8z15ypjoge8xk12jhw2uho1wms5aopt6u.png)
![\log 8 = 0.903, \log 3 = 0.477](https://img.qammunity.org/2021/formulas/mathematics/high-school/qh67za4rc3s5f51e22u44ari3c1gtqlf58.png)
![x= (0.903)/(0.477)+8](https://img.qammunity.org/2021/formulas/mathematics/high-school/elympa2uuiods0tz47fy9w7ol0p37b330k.png)
![x=1.893+8=9.893](https://img.qammunity.org/2021/formulas/mathematics/high-school/5jdswc4t4m1zphfg5l2qve6cb2mh3ukogp.png)
Hence, option D is correct.