Answer:
7.37 is the pH of the buffer.
Step-by-step explanation:
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(([salt])/([acid]))](https://img.qammunity.org/2021/formulas/biology/college/6usxe642bp3w274zbcv30her0kcessu95f.png)
![pH=pK_a+\log(([Na_2HPO_4])/([NaH_2PO_4]))](https://img.qammunity.org/2021/formulas/biology/college/mdqmk78xb6spu6slfsnnubkr14dymvjxa7.png)
We are given:
= dissociation constant =
![K_a=6.2* 10^(-8)](https://img.qammunity.org/2021/formulas/biology/college/n751wqo6ymlizun2s14ru6ebu2jhmgraxv.png)
Moles of
![Na_2HPO_4=(20.1 g)/(141.95884056 g/mol)=0.1416 mol](https://img.qammunity.org/2021/formulas/biology/college/3i3ujmrvfchgeqby2y115lnyuzfdut8qi0.png)
Moles of
![NaH_2PO_4=(11.6 g)/(119.97701128 g/mol)=0.09668 mol](https://img.qammunity.org/2021/formulas/biology/college/qr83115l3swo29rtcgvufy6dcnwr39jwfu.png)
![[concentration]=(moles)/(volume (L))](https://img.qammunity.org/2021/formulas/biology/college/4gwwdduakkoe8dg8usclpyarvbxgkdappt.png)
(acid)
(salt)
pH = ?
Putting values in above equation, we get:
![pH=-\log[6.2* 10^(-8)]+\log((0.1416 M)/(0.09668 M))\\\\pH=7.37](https://img.qammunity.org/2021/formulas/biology/college/93n9saijq6vl7nd8lrhf44say6zhgghsj5.png)
7.37 is the pH of the buffer.