217,970 views
41 votes
41 votes
60 points please help me i will appreciate it!

60 points please help me i will appreciate it!-example-1
User Aswin Kumar
by
2.9k points

2 Answers

19 votes
19 votes

Answer:

This is a pretty straightforward example of how an ideal gas law problem looks like.

Your strategy here will be to use the ideal gas law to find the pressure of the gas, but not before making sure that the units given to you match those used by the universal gas constant.

So, the ideal gas law equation looks like this

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

a

a

P

V

=

n

R

T

a

a

−−−−−−−−−−−−−−−

Here you have

P

- the pressure of the gas

V

- the volume it occupies

n

- the number of moles of gas

R

- the universal gas constant, usually given as

0.0821

atm

L

mol

K

T

- the absolute temperature of the gas

Take a look at the units given to you for the volume and temperature of the gas and compare them with the ones used in the expression of

R

.

a

a

a

a

a

a

a

a

a

a

a

Need

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Have

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Liters, L

a

a

a

a

a

a

a

a

a

a

a

a

a

Liters, L

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

Kelvin, K

a

a

a

a

a

a

a

a

a

a

a

a

Celsius,

C

a

a

a

a

a

a

a

a

a

×

Notice that the temperature of the gas must be expressed in Kelvin in order to work, so make sure that you convert it before plugging it into the ideal gas law equation

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

a

a

T

[

K

]

=

t

[

C

]

+

273.15

a

a

−−−−−−−−−−−−−−−−−−−−−−−−

Rearrange the ideal gas law equation to solve for

P

P

V

=

n

R

T

P

=

n

R

T

V

Plug in your values to find

P

=

0.325

moles

0.0821

atm

L

mol

K

(

35

+

273.15

)

K

4.08

L

P

=

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

a

a

2.0 atm

a

a

−−−−−−−−−−−

The answer is rounded to two sig figs, the number of sig figs you have for the temperature of the gas.

User Siddharth Pant
by
2.6k points
20 votes
20 votes

Answer:


\huge\boxed{\sf P = 1.68 \ atm}

Step-by-step explanation:

Given:

Moles = n = 0.6 mol

Volume = v = 9.13 L

Temperature = T = 38 °C + 273 = 311 K

Gas constant = R = 0.08206 L atm K⁻¹ mol⁻¹

Required:

Pressure = P = ?

Formula:

Pv = nRT

Solution:

Rearranging formula


\displaystyle P = (nRT)/(v) \\\\P = ((0.6)(0.08206)(311))/(9.13) \\\\P = (15.3)/(9.13) \\\\P = 1.68 \ atm\\\\\rule[225]{225}{2}

User Peter Lea
by
3.1k points