Answer:
Part 1)
![sin(A + B) =(185)/(697)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dh05oj8j166202poxh9nrewaagwodbepgj.png)
Part 2)
![sin(A - B) =(455)/(697)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mm8kylca9e7apc7ryja1we3wwislb42f8i.png)
Explanation:
Suppose A is in Quadrant IV and B is in Quadrant III.
If cos(A)=(9/41) and cos(B)=-(8/17)
Part 1) Find sin(A+B)
step 1
Find sin(A)
we know that
![sin^2(A)+cos^2(A)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pdh9eulrtomwzw0vbxtdf0bvo7aa9lmthx.png)
we have
![cos(A)=(9)/(41)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rehp9tkwaepynexen36c2bj8wgnhf71ihs.png)
substitute
![sin^2(A)+((9)/(41))^2=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b1sqymgg0t4m1wq5n1cpocfflslbi47ug1.png)
![sin^2(A)+(81)/(1,681)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/544sjponu8fiou059iutocs9yhkhbo1863.png)
![sin^2(A)=1-(81)/(1,681)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wys3z8x6wp0bpzu4fgxri6ms56osqaotrn.png)
![sin^2(A)=(1,600)/(1,681)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4b0vu62gmxc6az8zb58k5xzz7z36lmbcbz.png)
square root both sides
![sin(A)=\pm(40)/(41)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ruqfc55d5eopc5pnf8k8vd4ezxstphuixy.png)
Angle A is in Quadrant IV
so
sine(A) is negative
therefore
![sin(A)=-(40)/(41)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5s8lerop7weiqexkiec7zh0w7ufe150q7l.png)
step 2
Find sin(B)
we know that
![sin^2(B)+cos^2(B)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x7ce06yaaqtaiq3ywmk26lo8dhuvefgtol.png)
we have
![cos(B)=-(8)/(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/42q78ned528lvvwhx7nq0guz5n914zj47p.png)
substitute
![sin^2(B)+(-(8)/(17))^2=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oa5vfxl76p3qlxdcd8u0i6g7n4s9fb8raa.png)
![sin^2(B)+(64)/(289)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wviww4mabp7mhbk5fee66zr4n09e6ub6tq.png)
![sin^2(B)=1-(64)/(289)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4nj21criom484uzn17bfu1ebow92a24i8l.png)
![sin^2(B)=(225)/(289)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/pzvi5f1icgjwjx6asr9o80et1o0bye13gu.png)
square root both sides
![sin(B)=\pm(15)/(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x6le1als1y464j0zghtiwo6ezkqo0aha2c.png)
Angle B is in Quadrant III
so
sine(B) is negative
therefore
![sin(B)=-(15)/(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vvfdgbd1ogfy3x8ne5mer9uloozjdu6u9w.png)
step 3
Find sin(A+B)
we know that
![sin(A + B) = sin A cos B + cos A sin B](https://img.qammunity.org/2021/formulas/mathematics/middle-school/spwf27dw7heb92qmuc4hwd6snzeud7e4om.png)
we have
![sin(A)=-(40)/(41)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5s8lerop7weiqexkiec7zh0w7ufe150q7l.png)
![cos(A)=(9)/(41)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rehp9tkwaepynexen36c2bj8wgnhf71ihs.png)
![cos(B)=-(8)/(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/42q78ned528lvvwhx7nq0guz5n914zj47p.png)
![sin(B)=-(15)/(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vvfdgbd1ogfy3x8ne5mer9uloozjdu6u9w.png)
substitute
![sin(A + B) =(-(40)/(41))(-(8)/(17)) +((9)/(41))(-(15)/(17))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3oo4msdoft4cphuajyfjoy5hahul54sote.png)
![sin(A + B) =(320)/(697) -(135)/(697)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6jwgug4zfqhjt7hftzbn0wb19c6vsvnjiz.png)
![sin(A + B) =(185)/(697)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dh05oj8j166202poxh9nrewaagwodbepgj.png)
Part 2) Find sin(A-B)
we know that
![sin(A- B) = sin A cos B-cos A sin B](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tsh327rfp8omidyit5rp8dl96zh6hoxz4u.png)
we have
![sin(A)=-(40)/(41)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5s8lerop7weiqexkiec7zh0w7ufe150q7l.png)
![cos(A)=(9)/(41)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rehp9tkwaepynexen36c2bj8wgnhf71ihs.png)
![cos(B)=-(8)/(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/42q78ned528lvvwhx7nq0guz5n914zj47p.png)
![sin(B)=-(15)/(17)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vvfdgbd1ogfy3x8ne5mer9uloozjdu6u9w.png)
substitute
![sin(A - B) =(-(40)/(41))(-(8)/(17)) -((9)/(41))(-(15)/(17))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ypcjrim586wzsb84jiiac9f360gce7jbnj.png)
![sin(A - B) =(320)/(697) +(135)/(697)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/omqf0wgb05irxaqomxjs1mxo9ywhjwrft1.png)
![sin(A - B) =(455)/(697)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mm8kylca9e7apc7ryja1we3wwislb42f8i.png)