195k views
4 votes
Rewrite the expression using the properties of exponents.


( \frac{4 }{64 {}^{ (5)/(6) } } ) {}^{ (1)/(2) }


1 Answer

3 votes

Answer:


(\frac{4}{64^{(5)/(6)}})^{(1)/(2)}=(√(2))/(4)

Explanation:

Exponents property :
(x^a)^b=x^(ab);(x^c)/(x^a)=x^(c-d)=(1)/(x^(d-c))


(\frac{4}{64^{(5)/(6)}})^{(1)/(2)}\\4=2* 2=2^2\\64=2* 2* 2* 2* 2* 2=2^6\\\\64^{(5)/(6)}=(26)^{(5)/(6)}=2^{6* (5)/(6)}=2^5\\\\(\frac{4}{64^{(5)/(6)}})^{(1)/(2)}=((2^2)/(2^5))^{(1)/(2)}=((1)/(2^(5-2)))^{(1)/(2)}=((1)/(2^3))^{(1)/(2)}\\\\=\frac{1}{2^{(3)/(2)}}=(1)/(2√(2) )

Multiply numerator and denominator by
√(2)


(\frac{4}{64^{(5)/(6)}})^{(1)/(2)}=(1)/(2√(2))* (√(2))/(√(2))=(√(2))/(4)

User Daniyar
by
3.4k points