115k views
3 votes
HELP PLEZ TRIGONOMETRY!

HELP PLEZ TRIGONOMETRY!-example-1
User Jabalsad
by
6.0k points

1 Answer

7 votes


(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) = sin \alpha - cos \alpha

Solution:

Given that we have to simplify:


(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) ---- eqn 1

We know that,


sin^2 x = 1 - cos^2 x

Substitute the above identity in eqn 1


(2\left(1-\cos ^(2) \alpha\right)-1)/(\sin \alpha+\cos \alpha)

Simplify the above expression


(2-2 \cos ^(2) \alpha-1)/(\sin \alpha+\cos \alpha)


(1-2 \cos ^(2) \alpha)/(\sin \alpha+\cos \alpha) ------- eqn 2

By the trignometric identity,


(sin x + cos x)(sin x - cos x) = 1-2cos^2 x

Substitute the above identity in eqn 2


((\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha))/(\sin \alpha+\cos \alpha)

Cancel the common factors in numerator and denominator


((\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha))/(\sin \alpha+\cos \alpha)=\sin \alpha-\cos \alpha

Thus the simplified expression is:


(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) = sin \alpha - cos \alpha

User Scott Rice
by
5.9k points