115k views
3 votes
HELP PLEZ TRIGONOMETRY!

HELP PLEZ TRIGONOMETRY!-example-1
User Jabalsad
by
8.5k points

1 Answer

7 votes


(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) = sin \alpha - cos \alpha

Solution:

Given that we have to simplify:


(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) ---- eqn 1

We know that,


sin^2 x = 1 - cos^2 x

Substitute the above identity in eqn 1


(2\left(1-\cos ^(2) \alpha\right)-1)/(\sin \alpha+\cos \alpha)

Simplify the above expression


(2-2 \cos ^(2) \alpha-1)/(\sin \alpha+\cos \alpha)


(1-2 \cos ^(2) \alpha)/(\sin \alpha+\cos \alpha) ------- eqn 2

By the trignometric identity,


(sin x + cos x)(sin x - cos x) = 1-2cos^2 x

Substitute the above identity in eqn 2


((\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha))/(\sin \alpha+\cos \alpha)

Cancel the common factors in numerator and denominator


((\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha))/(\sin \alpha+\cos \alpha)=\sin \alpha-\cos \alpha

Thus the simplified expression is:


(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) = sin \alpha - cos \alpha

User Scott Rice
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories