![(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) = sin \alpha - cos \alpha](https://img.qammunity.org/2021/formulas/mathematics/college/98tse2cobhb6ggw9kifr111tpt8tofo3yt.png)
Solution:
Given that we have to simplify:
---- eqn 1
We know that,
![sin^2 x = 1 - cos^2 x](https://img.qammunity.org/2021/formulas/mathematics/college/g2icjsgryuijzg02m35uog89w74s78v37s.png)
Substitute the above identity in eqn 1
![(2\left(1-\cos ^(2) \alpha\right)-1)/(\sin \alpha+\cos \alpha)](https://img.qammunity.org/2021/formulas/mathematics/college/hi84y4io5bk7widlhfb8nzaz7bju0asb2w.png)
Simplify the above expression
![(2-2 \cos ^(2) \alpha-1)/(\sin \alpha+\cos \alpha)](https://img.qammunity.org/2021/formulas/mathematics/college/oc1hciorrgwe9tnqco1bm28r8r74mumcin.png)
------- eqn 2
By the trignometric identity,
![(sin x + cos x)(sin x - cos x) = 1-2cos^2 x](https://img.qammunity.org/2021/formulas/mathematics/college/7c0ycxh0yyo181hhhaewm8aqilrt2cwlf7.png)
Substitute the above identity in eqn 2
![((\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha))/(\sin \alpha+\cos \alpha)](https://img.qammunity.org/2021/formulas/mathematics/college/1bg0mxw2dygu4orv9la9qfp5kqzhuqdlbh.png)
Cancel the common factors in numerator and denominator
![((\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha))/(\sin \alpha+\cos \alpha)=\sin \alpha-\cos \alpha](https://img.qammunity.org/2021/formulas/mathematics/college/hibc7ajg1bp0egbc7i4ha9uhm0eo69f79b.png)
Thus the simplified expression is:
![(2 \sin ^(2) \alpha-1)/(\sin \alpha+\cos \alpha) = sin \alpha - cos \alpha](https://img.qammunity.org/2021/formulas/mathematics/college/98tse2cobhb6ggw9kifr111tpt8tofo3yt.png)