Answer:
Therefore the Dimensions of Rectangular field are
![Length=66\ feet\\Width=13\ feet](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k5jkc8cd14tb7bd03e8x38rc7puqwrsd9k.png)
Explanation:
Given:
Let the length of the Rectangular field be ' L '
and Width be 'W'
According to given Condition
![L=6W-12](https://img.qammunity.org/2021/formulas/mathematics/middle-school/24ttlkde9p4gtoe0rahsduje2o9r786rgw.png)
Perimeter = 158 ft
To Find:
L = ?
W = ?
Solution:
Perimeter of Rectangle is given as
![Perimeter=2* L+2* W](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ipydm7o3luarzbn3d0ei4nyyn4clg54fxa.png)
Substitute 'L' and Perimeter we get
![158=2* (6W-12)+2W=12W-24+2W\\\\14W=158+24=182\\\\W=(182)/(14)=13\ feet](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xbdgvqm842vots15vc71otqewbmx1wqokd.png)
Substitute 'W' in L we get
![L=6* 13-12=66](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5srctll5jfyxxncx1gjtokgbii2fppe6c5.png)
Therefore the Dimensions of Rectangular field are
![Length=66\ feet\\Width=13\ feet](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k5jkc8cd14tb7bd03e8x38rc7puqwrsd9k.png)