The sum of given series is 44
Solution:
Given that we have to find the sum of the series
Given series is:
![\sum_(k=1)^(4)\left(2 k^(2)-4\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wbj29xcevh8s1s5bdf3mst4bfnuzkq1j1h.png)
Substitute k = 1 to k = 4 to find the sum of the series
When k = 1:
![\rightarrow 2(1)^2 - 4 = 2 - 4 = -2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jiovojzl3yvhkzvpev07xld84lud7xqxv8.png)
When k = 2:
![\rightarrow 2(2)^2 - 4 = 2(4) - 4 = 8 - 4 = 4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8rditywiu2dr8gv3zgx8xqxfwkdi34h0jz.png)
When k = 3:
![\rightarrow 2(3)^2 - 4 = 2(9) - 4 = 18 - 4 = 14](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iw5xooz0t0byufysvnl0ijypelhlngd17o.png)
When k = 4:
![\rightarrow 2(4)^2 - 4 = 2(16) - 4 = 32 - 4 = 28](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oq9t4lo1os1taeqvwmt5xpndwgz8rbm99b.png)
Therefore, the sum of series is given as:
![\sum_(k=1)^(4)\left(2 k^(2)-4\right)=-2+4+14+28=44](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5gowfe7qeqfjg80dnjdz2zpuflxc3afexa.png)
Thus the sum of series is 44