Answer:
Part 4)
![r=84\ units](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b0evrsh8fcexrgfta2v5xwxl6zluak7sez.png)
Part 9)
![sin(\theta)=-(√(5))/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/itq136iugqgt82p8egncvcs68a540c9o7s.png)
Part 10)
![sin(\theta)=-(9√(202))/(202)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yaf83vujgtuiz2ltr0dhfgovxmuvs8w6t5.png)
Explanation:
Part 4) A circle has an arc of length 56pi that is intercepted by a central angle of 120 degrees. What is the radius of the circle?
we know that
The circumference of a circle subtends a central angle of 360 degrees
The circumference is equal to
![C=2\pi r](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mi4tnw17egix4j0slvrtb6r082cjra53zk.png)
using proportion
![(2\pi r)/(360^o)=(56\pi)/(120^o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9v4ewxrygif7w6opwczy38fiu409587jyq.png)
simplify
![(r)/(180^o)=(56)/(120^o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b36x3o7l6b6x2fjocsrobu60l9ta4w61my.png)
solve for r
![r=(56)/(120^o)(180^o)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/c986uanm7o5qrnjd41hkste8jlg5k1rxwz.png)
![r=84\ units](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b0evrsh8fcexrgfta2v5xwxl6zluak7sez.png)
Part 9) Given cos(∅)=-2/3 and ∅ lies in Quadrant III. Find the exact value of sin(∅) in simplified form
Remember the trigonometric identity
![cos^2(\theta)+sin^2(\theta)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/mhrqn698glonk1v55sfj9y003txa2nkje3.png)
we have
![cos(\theta)=-(2)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k0e9ynvz9a7p3srnhsihscuvqcm8u9ggke.png)
substitute the given value
![(-(2)/(3))^2+sin^2(\theta)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l4s5qrxkcdmjlppvi6yo72yqigt13pprow.png)
![(4)/(9)+sin^2(\theta)=1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rvmx8gd0zniatj7njx68kb0xcf9s3pmcvm.png)
![sin^2(\theta)=1-(4)/(9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hu45im3e7hr6206czo84f8syrgw8wqxig7.png)
![sin^2(\theta)=(5)/(9)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bz5v5zy8lv1tej816bjxv26cj2iyq6yw9l.png)
square root both sides
![sin(\theta)=\pm(√(5))/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ffsj30gjnpoko5bf8vo2ruikyfvmoctruv.png)
we know that
If ∅ lies in Quadrant III
then
The value of sin(∅) is negative
![sin(\theta)=-(√(5))/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/itq136iugqgt82p8egncvcs68a540c9o7s.png)
Part 10) The terminal side of ∅ passes through the point (11,-9). What is the exact value of sin(∅) in simplified form?
see the attached figure to better understand the problem
In the right triangle ABC of the figure
![sin(\theta)=(BC)/(AC)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sgwgj3nusw53ist7ml034w0jub3ybvy6ma.png)
Find the length side AC applying the Pythagorean Theorem
![AC^2=AB^2+BC^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nzodcaves3d5cn49k90or16rezpprecaag.png)
substitute the given values
![AC^2=11^2+9^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z0ew5uqm9gvi5nz9qc1uu9ryhpupardxlb.png)
![AC^2=202](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rd3w4vpdid6o9g98o8bmtwt8x1x3ivqcjq.png)
![AC=√(202)\ units](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n3kxinohbauqj70aqivejg85k819hte0ji.png)
so
![sin(\theta)=(9)/(√(202))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/klbi0xbpbgqslbmkep4getjj6gjqxnot71.png)
simplify
![sin(\theta)=(9√(202))/(202)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sdfpjy0mg4gzsri8zgquucdo1rk29u2epo.png)
Remember that
The point (11,-9) lies in Quadrant IV
then
The value of sin(∅) is negative
therefore
![sin(\theta)=-(9√(202))/(202)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yaf83vujgtuiz2ltr0dhfgovxmuvs8w6t5.png)