Answer:
α = 3.59 [rad/s^2]]
Step-by-step explanation:
First we have to convert the values of the angular speeds of revolutions per minute to radians on second.
wf = final angular velocity = 460 [rpm]
wo= initial velocity = 48 [rpm]
t = time = 12 [s]
![460 [(rev)/(min)]* [(2\pi rad)/(1 rev) ]*[(1min)/(60seg) ] = 48.17[(rad)/(s) ]\\48 [(rev)/(min)]* [(2\pi rad)/(1 rev) ]*[(1min)/(60seg) ] = 5.02[(rad)/(s) ]](https://img.qammunity.org/2021/formulas/physics/middle-school/vq0jx1rgq8m7ttljuemhixcdakbtu6vij0.png)
now we can replace, in the following equation:
![w_(o)=w_(i) +\alpha *t\\where:\\\alpha = angular acceleration [rad/s^(2)]\\replacing:\\\alpha =(w_(o) -w_(i) )/(t) \\\alpha alpha =(48.17-5.02 )/(12) \\\alpha =3.59[(rad)/(s^(2) ) ]](https://img.qammunity.org/2021/formulas/physics/middle-school/pybkrlmax1mglcqf8pj46dyitn7vidk8qm.png)