is the result of multiplying (3x-1) to the second power and (x+6) to the second power
Solution:
Given that we have to find the result of multiplying polynomials (3x-1) to the second power and (x+6) to the second power
"Second power" means the term is raised to power of 2
Therefore,
We have to multiply
![(3x-1)^2 \text{ and }(x+6)^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oreq27mywe0xzvduyve0wzqskme9dkweay.png)
![\rightarrow (3x-1)^2 * (x+6)^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/91p8qcw928vjlyutkx06a6aptv84f88c6c.png)
We can use the algebraic identity to expand the above expression
![(a+b)^2 = a^2+2ab+b^2\\\\(a-b)^2=a^2-2ab+b^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ez1lydckxlg43tdui4nphq8y2svqwj7efi.png)
Applying these in above expression, we get
![\rightarrow ((3x)^2-2(3x)(1)+1^2) * (x^2+2(x)(6)+6^2)\\\\\rightarrow (9x^2-6x+1) * (x^2+12x+36)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/a4mwbyrdfbm6e4veh1x7xm5bd3c4u7fej6.png)
Multiply each term in first bracket with each term in second bracket
![\rightarrow 9x^2(x^2)+(9x^2)(12x)+(9x^2)(36)-6x(x^2)-6x(12x)-6x(36) + x^2+12x+36](https://img.qammunity.org/2021/formulas/mathematics/middle-school/h014rds732mzx9mpkxanjhqq9e6vexz7aa.png)
Simplify the above expression
![\rightarrow 9x^4+108x^3+324x^2-6x^3-72x^2-216x+x^2+12x+36](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hg97gokmh6kg5edaio87irpsgzn11hr6na.png)
Combine the like terms
![\rightarrow 9x^4+102x^3+253x^2-204x+36](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6k3guxvf1j9qdvs3uhysigo9t78jrjhkke.png)
Thus the above expression is the result of multiplying (3x-1) to the second power and (x+6) to the second power