151k views
1 vote
How do you integrate
(1)/(e^x+2)? using partial fractions (another method is OK). Thank you!

User Hani Goc
by
5.8k points

1 Answer

4 votes

By substituting
y=e^x+2, or
x=\ln(y-2) so that
\mathrm dx=(\mathrm dy)/(y-2), we have


\displaystyle\int(\mathrm dx)/(e^x+2)=\int(\mathrm dy)/(y(y-2))

Split the integrand into partial fractions:


\frac1{y(y-2)}=\frac12\left(\frac1{y-2}-\frac1y\right)

Then integrating gives


\displaystyle\int(\mathrm dy)/(y(y-2))=\frac12(\ln|y-2|-\ln|y|)+C

Back-substitute to get


\displaystyle\int(\mathrm dx)/(e^x+2)=\frac12(\ln|e^x|-\ln|e^x+2|)+C=\frac{x-\ln(e^x+2)}2+C

User JoeFish
by
4.4k points