Answer:
![m\angle AED=70^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/83s77yqh2m044nvilc53po0otw7niblpat.png)
![m\angle ACE=x=10^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/98azsidyam389tl9inxkinff1umlfc4qr6.png)
Explanation:
Consider quadrilateral ABDE. This quadrilateral is inscribed in the circle, so the sum of the measures of two opposite angles of quadrilateral is 180°. So,
![m\angle AED+m\angle ABD=180^(\circ)\\ \\m\angle AED+110^(\circ)=180^(\circ)\\ \\m\angle AED=180^(\circ)-110^(\circ)=70^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v19w6snrsoc6tk5uov4g802q6g9scbpjic.png)
Consider triangle ABD. The sum of the measures of all interior angles in triangle ABD is 180°, so
![m\angle BAD+m\angle ABD+m\ange BDA=180^(\circ)\\ \\m\angle BAD+110^(\circ)+40^(\circ)=180^(\circ)\\ \\m\angle BAD=180^(\circ)-110^(\circ)-40^(\circ)=30^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7kzmflgp9z8l870hcuudx2tvy3u5nbqynn.png)
Consider triangle ADE. This triangle is isosceles triangle, because AD = DE. Angles adjacent to the base AE are congruent, so
![m\angle DAE=m\angle AED=70^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7fd3u60dym2hw2cps0wgu6vrmp5r1mbdto.png)
Consider triangle ACE. The sum of the measures of all interior angles in triangle ACE is 180°, so
![m\angle CAE+m\angle ACE+m\ange CEA=180^(\circ)\\ \\m\angle CAD+m\angle DAE+m\angle ACE+m\ange CEA=180^(\circ)\\ \\m\angle ACE+30^(\circ)+70^(\circ)+70^(\circ)=180^(\circ)\\ \\m\angle ACE=180^(\circ)-30^(\circ)-70^(\circ)-70^(\circ)=10^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q3363zgwz3tzz57vtitti7wktnrwt3kcgb.png)