Answer:
width = 5 in
length = 5+4=9 in
height = 2(5)= 10 in
Explanation:
A gift box has a volume of 450 cubic inches.
Let 'w' be the width of the box
The width of the box is 4 inches less than the length.
![length = w+4](https://img.qammunity.org/2021/formulas/mathematics/high-school/wy5dkenwcs7f0vackpc689yllcifqsgm5g.png)
The height is twice the width.
![height = 2 \cdot width](https://img.qammunity.org/2021/formulas/mathematics/high-school/mcmh9rnsfr3cvrpp4cqlati9g9h7tvuke0.png)
height = 2w
Volume of box = length times width times height
![V=(w+4)(w)(2w)](https://img.qammunity.org/2021/formulas/mathematics/high-school/11zvcipr7m8yz2yuakax3o6ez8no0h3ga3.png)
![450=(w+4)(w)(2w)](https://img.qammunity.org/2021/formulas/mathematics/high-school/im7cpb1zpc756zgji9f7llf53zbgxskqum.png)
![450=2w^3+8w^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/cabc26q4zljnfo186r3h2k7nvwxnjxit0z.png)
![2w^3+8w^2-450=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/nrr7k3t8r7w69p471q8ly7iftvjggepq3k.png)
![\quad 2\left(w-5\right)\left(w^2+9w+45\right)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/tkh12u4h0y7rgr640lgwqpzwe25ssg2px8.png)
![w-5=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/ocqijzez7psjb0rflxtkjml0cpzqb6uada.png)
w=5
, this gives two complex values
so width = 5
length = 5+4=9
height = 2(5)= 10