135k views
1 vote
Write the solution set using interval notation -3(2x-1)<-4[2+3(x+2)]

User Ddso
by
8.1k points

1 Answer

5 votes

Answer:


\large\boxed{x<-5(5)/(6)\to x\in\left(-\infty,\ -5(5)/(6)\right)}

Explanation:


-3(2x-1)<-4\bigg[2+3(x+2)\bigg]\qquad\text{use the distributive property}\\\\(-3)(2x)+(-3)(-1)<-4\bigg[2+(3)(x)+(3)(2)\bigg]\\\\-6x+3<-4\bigg(2+3x+6\bigg)\qquad\text{combine like terms}\\\\-6x+3<-4\bigg(3x+8\bigg)\qquad\text{use the distributive property}\\\\-6x+3<(-4)(3x)+(-4)(8)\\\\-6x+3<-12x-32\qquad\text{subtract 3 from both sides}\\\\-6x+3-3<-12x-32-3\\\\-6x<-12x-35\qquad\text{add}\ 12x\ \text{to both sides}\\\\-6x+12x<-12x+12x-35\\\\6x<-35\qquad\text{divide both sides by 6}\\\\(6x)/(6)<(-35)/(6)


x<-(35)/(6)\to x<-5(5)/(6)

User Sergi Nadal
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories