Answer:
NOO!
Explanation:
![\tt -7(x+5)=-14](https://img.qammunity.org/2023/formulas/mathematics/high-school/l7h67baj0czmcwh18n02wsh974uipvcx2p.png)
First ,let's move all terms to the left:
Add all numbers together, and all variables
![\tt -7(x+5)+14=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/u5ikrb423b1mw807h5ao8qzb9dssam5ytk.png)
Multiply parentheses:-
![\tt -7x-35+14=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/o30bd6huz12kt5kfxj1yn7hxnj1hfbopaw.png)
Add all numbers/variables together:
![\tt -7x-21=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/n0ac9c9ct0xmg9rgo0ha766mwfx3tupd5j.png)
Now, move all terms containing x to the left, and all other terms to the right:
![\tt -7x=21](https://img.qammunity.org/2023/formulas/mathematics/high-school/tpftk7uu9yf4i6n53z235uiunhucd4tdpe.png)
Divide both sides by -7:-
![\tt \cfrac{-7x}{-7}=\cfrac{21}{-7}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xtgz94l1vlwpawtsh63uyhvlkiu6vnkrab.png)
![\tt x=-3](https://img.qammunity.org/2023/formulas/mathematics/high-school/u3i4adharnxo1cohz5p9a1xopyd6r0oucn.png)
Nope, 10 isn't a solution to -7(x+5)=-14.
~