228k views
16 votes
HELP ME ASAP PLEASE ITS THE SAME CONCEPT

HELP ME ASAP PLEASE ITS THE SAME CONCEPT-example-1
User Kelunik
by
8.6k points

1 Answer

12 votes

Answer :

  • m∠Q = 133°

Explanation :

We know that,

  • Sum of all angles of a triangle = 180°.

Therefore,


{ \longrightarrow \sf \qquad \: m \angle \: P +m \angle Q + m\angle R = 180 {}^( \circ) }


{ \longrightarrow \sf \qquad \: {(x + 13)}^( \circ) +{(10x + 13)}^( \circ) + {(2x - 2)}^( \circ) = 180 {}^( \circ) }

Adding like terms we get :


{ \longrightarrow \sf \qquad \: {(x + 10x + 2x)} +(13^( \circ) + 13^( \circ) - 2^( \circ) ) = 180 {}^( \circ) }


{ \longrightarrow \sf \qquad \: 13x +24^( \circ) = 180 {}^( \circ) }


{ \longrightarrow \sf \qquad \: 13x = 180 {}^( \circ) - 24^( \circ) }


{ \longrightarrow \sf \qquad \: 13x = 156 {}^( \circ) }


{ \longrightarrow \sf \qquad \: x = \frac{156 {}^( \circ) }{13} }


{ \longrightarrow \qquad \: { \pmb{ x = 12 {}^( \circ) } }}

Therefore,

  • The value of x = 12°

Now, Substituting the value of x in m∠Q :


{ \longrightarrow \qquad \: { \sf{ m \angle Q =( 10x + 13) {}^( \circ) } }}


{ \longrightarrow \qquad \: { \sf{ m \angle Q =10(12) {}^( \circ) + 13{}^( \circ) } }}


{ \longrightarrow \qquad \: { \sf{ m \angle Q =120 {}^( \circ) + 13{}^( \circ) } }}


{ \longrightarrow \qquad \: { \pmb{ m \angle Q =133 {}^( \circ) } }}

User Dr Sokoban
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories