5. arc length = radius x central angle in radians
arc length = 28 x 3π/4 = 21π
answer: (21π) cm
6. You are right. Quadrant 1 features points where both the x coordinate and the y coordinate are positive. Cosine and sine are basically special coordinates.
7. We need to find the tan(2π/3). The hint is quite bad I must say because you need to find the sine and cosine of an angle to find tangent. Okay, back to the problem.
tan(2π/3) = sin(2π/3)/cos(2π/3)
We know π/3 to be a special angle on the unit circle. It has a cosine of 1/2 and a sine of
. Because we know this, its partner in quadrant 2 (2π/3) will have a cosine of -1/2 and a sine of
.
tan(2π/3) =
÷ -1/2= -√3
answer: -√3
8. Both angles are special angles so...
2cos(π/6) - 2tan(π/3) = 2(
) - 2(
÷ 1/2) = √3 - 2√3 = -√3 (ok what a coincidence)
answer: -√3