Answer:
A. Mrŵ² = ųMg
Ŵ = (ųg/r)^½
B.
Ŵ =[ (g /r)* tan á]^½
Step-by-step explanation:
T.v.= centrepetal force = mrŵ²
Where m = mass of block,
r = radius
Ŵ = angular momentum
On a horizontal axial banking frictional force supplies the Pentecostal force is numerically equal.
So there for
Mrŵ² = ųMg
Ŵ = (ųg/r)^½
g = Gravitational pull
ų = coefficient of friction.
B. The net external force equals the horizontal centerepital force if the angle à is ideal for the speed and radius then friction becomes negligible
So therefore
N *(sin á) = mrŵ² .....equ 1
Since the car does not slide the net vertical forces must be equal and opposite so therefore
N*(cos á) = mg.....equ 2
Where N is the reaction force of the car on the surface.
Equ 2 becomes N = mg/cos á
Substituting N into equation 1
mg*(sin á /cos á) =mrŵ²
Tan á = rŵ²/g
Ŵ =[ (g /r)* tan á]^½