Answer: b. 0.98
Explanation:
The formula to find the maximum error of the estimated mean :
(1)
, where
= standard deviation
n= Sample size
z* = Critical z-value.
As per given , we have
![\sigma=5](https://img.qammunity.org/2021/formulas/mathematics/college/fi7x4iw6w6e3kmti5t58qi4i1fu2huzho6.png)
n=100
Critical value for 95% confidence interval = z*=1.96
Put these values in the formula (1), we get
![E=(1.96)(5)/(√(100))](https://img.qammunity.org/2021/formulas/mathematics/college/wsgomarf5ojrbmey6nujwoucboc42air5w.png)
![E=(1.96)(5)/(10)=0.98](https://img.qammunity.org/2021/formulas/mathematics/college/uvt6q54mx49jtfm912q03lonafwvyaxx41.png)
Hence, the maximum error of the estimated mean quality for a 95% level of confidence is 0.98.
Therefore , the correct answer is b. 0.98 .