145k views
3 votes
The area of a circular oil slick on the surface of the sea is increasing at a rate of [150m^2/s] how fast is the radius changing when:

a) the radius is 25 m

b) the area is [1000 m^2]

1 Answer

6 votes

Answer with Step-by-step explanation:

We are given that


(dA)/(dt)=150m^2/s

a.Radius =25 m

We have to find rate of change of radius.

We know that

Area of circle,
A=\pi r^2

Differentiate w.r.t time


(dA)/(dt)=2\pi r(dr)/(dt)

Substitute the values then we get


150=2\pi (25)(dr)/(dt)


(dr)/(dt)=(150)/(50\pi)=(3)/(\pi) m/s


(dr)/(dt)=(3)/(\pi) m/s

b.A=
1000m^2

Substitute the values then we get


1000=\pi r^2


\pi=3.14


r^2=(1000)/(3.14)


r=\sqrt{(1000)/(3.14)}=17.8m


(dA)/(dr)=2\pi r(dr)/(dt)

Substitute the values then we get


150=2\pi(17.8)(dr)/(dt)


(dr)/(dt)=(150)/(2\pi(17.8))=(150)/(35.6\pi)m/s


(dr)/(dt)=(75)/(17.8\pi)m/s

User Mike James
by
3.9k points