Answer:
The time period =
![(\pi)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5tz72qjyolfgoeebpjuu6vcc8tteuqsq8v.png)
Step-by-step explanation:
Let's assume a pendulum of length l and time period T.
Then the equation for the time period, T =
![2\pi \sqrt{(l)/(g) }](https://img.qammunity.org/2021/formulas/physics/high-school/jvyrjqtsfg7sxo1zlzbao33xp1geh6eh3u.png)
Here g = acceleration due to gravity = 9.8 m/
![s^(2)](https://img.qammunity.org/2021/formulas/physics/high-school/gc1nu4waym469je1mfqno1uqpq0jqmefce.png)
Here we are given a simple pendulum of length 2.45 m.
Substitute this value of length in the given equation,
T =
![2\pi \sqrt{(l)/(g) }](https://img.qammunity.org/2021/formulas/physics/high-school/jvyrjqtsfg7sxo1zlzbao33xp1geh6eh3u.png)
=
![2\pi \sqrt{(2.45)/(9.8)}](https://img.qammunity.org/2021/formulas/physics/high-school/muh22a3a9n09yf4sa1ky0chiia3kihhqyt.png)
=
![(\pi )/(2)](https://img.qammunity.org/2021/formulas/physics/high-school/oao6yzupb18dpm8mdakzzz2bjwe6unuydi.png)
Hence the time period =
![(\pi)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5tz72qjyolfgoeebpjuu6vcc8tteuqsq8v.png)