13.8k views
0 votes
Find exact values for sin θ, cos θ and tan θ if csc θ = 3/2 and cos θ < 0.

User Brian Kung
by
5.0k points

1 Answer

3 votes

Answer:

Part 1)
sin(\theta)=(2)/(3)

Par 2)
cos(\theta)=-(√(5))/(3)

Part 3)
tan(\theta)=-(2√(5))/(5)

Explanation:

step 1

Find the
sin(\theta)

we have


csc(\theta)=(3)/(2)

Remember that


csc(\theta)=(1)/(sin(\theta))

therefore


sin(\theta)=(2)/(3)

step 2

Find the
cos(\theta)

we know that


sin^(2)(\theta) +cos^(2)(\theta)=1

we have


sin(\theta)=(2)/(3)

substitute


((2)/(3))^(2) +cos^(2)(\theta)=1


(4)/(9) +cos^(2)(\theta)=1


cos^(2)(\theta)=1-(4)/(9)


cos^(2)(\theta)=(5)/(9)

square root both sides


cos(\theta)=\pm(√(5))/(3)

we have that


cos(\theta) < 0 ---> given problem

so


cos(\theta)=-(√(5))/(3)

step 3

Find the
tan(\theta)

we know that


tan(\theta)=(sin(\theta))/(cos(\theta))

we have


sin(\theta)=(2)/(3)


cos(\theta)=-(√(5))/(3)

substitute


tan(\theta)=(2)/(3):-(√(5))/(3)=-(2)/(√(5))

Simplify


tan(\theta)=-(2√(5))/(5)

User Izeed
by
6.8k points