153k views
3 votes
Find exact values for sin θ and tan θ if cos θ = -√2/5 and θ terminates in Quadrant III.

User Rnicholson
by
5.5k points

1 Answer

3 votes

Answer:

Part 1)
sin(\theta)=-(√(23))/(5)

Part 2)
tan(\theta)=(√(46))/(2)

Explanation:

step 1

Find the
sin(\theta)

we know that


sin^(2)(\theta) +cos^(2)(\theta)=1

we have


cos(\theta)=-(√(2))/(5)

substitute


sin^(2)(\theta) +(-(√(2))/(5))^(2)=1


sin^(2)(\theta) +(2)/(25)=1


sin^(2)(\theta)=1-(2)/(25)


sin^(2)(\theta)=(23)/(25)

square root both sides


sin(\theta)=\pm(√(23))/(5)

Remember that the angle θ terminates in Quadrant III

That means, that the value of sin(θ) is negative

so


sin(\theta)=-(√(23))/(5)

step 2

Find the
tan(\theta)

we know that


tan(\theta)=(sin(\theta))/(cos(\theta))

we have


sin(\theta)=-(√(23))/(5)


cos(\theta)=-(√(2))/(5)

substitute


tan(\theta)=-(√(23))/(5):-(√(2))/(5)=(√(23))/(√(2))

simplify


tan(\theta)=(√(46))/(2)

User Luna
by
6.7k points