Answer:
Part 1)
![sin(\theta)=-(√(65))/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gfdmcqq3hkbaf886z6g6x737va4p253lfw.png)
Part 2)
![tan(\theta)=(√(65))/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4fvyjotqgnsiek168hew4p56pzj59yubb2.png)
Explanation:
we have that
The cosine of angle theta is negative and the tangent of angle theta is positive
That means that the sine of angle theta is negative
step 1
Find
![sin(\theta)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/sp5qrh069j41by0m2ky5rri8umhzhuc2s6.png)
we know that
![sin^(2)(\theta) +cos^(2)(\theta)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/475dhp68uyufb6dl8u5js1k08j65eko6jv.png)
we have
![cos(\theta)=-(4)/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/udoqkhcqfhyorju2gp9m57ov6ttq0v7i18.png)
substitute
![sin^(2)(\theta) +(-(4)/(9))^(2)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/i2xbepph1cwo1saqo867u8u8n78hinbr9u.png)
![sin^(2)(\theta) +(16)/(81)=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/3mjomne278m38z50umgivsesyge6rj5b2o.png)
![sin^(2)(\theta)=1-(16)/(81)](https://img.qammunity.org/2021/formulas/mathematics/high-school/601cp8j8238ls0i05ho0a1h382qospw9os.png)
![sin^(2)(\theta)=(65)/(81)](https://img.qammunity.org/2021/formulas/mathematics/high-school/g2arjq40h93oh0hmjd9schpqwy1brdgdfd.png)
square root both sides
![sin(\theta)=\pm(√(65))/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/568l2eo0n28757l5tkor7v0rscvjrw74yb.png)
Remember that
In this problem the sine of angle theta is negative
so
![sin(\theta)=-(√(65))/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gfdmcqq3hkbaf886z6g6x737va4p253lfw.png)
step 2
Find
![tan(\theta)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tju1qtj7vgwhr3c0m0e5gvukmoadwkc9nn.png)
we know that
![tan(\theta)=(sin(\theta))/(cos(\theta))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xatv7qblgw88l26rjxg9o7z6tku19zdi2r.png)
we have
![sin(\theta)=-(√(65))/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gfdmcqq3hkbaf886z6g6x737va4p253lfw.png)
![cos(\theta)=-(4)/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/udoqkhcqfhyorju2gp9m57ov6ttq0v7i18.png)
substitute the given values
![tan(\theta)=-(√(65))/(9):-(4)/(9)=(√(65))/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3dhj9delawimx9wb3qln9prr560be9xvt1.png)