Answer:
![tan(-\theta)=-tan\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/3azfq0ozfuyba85afazr4bvmxgdyskiku8.png)
Odd function
Explanation:
We are given that
![tan(-\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3wv96om6lcoh5luy3p6vix63igvj45qg1r.png)
We have to determine the value of
and find tangent function is odd,even or neither.
![tan(-\theta)=(sin(-\theta))/(cos(-\theta))](https://img.qammunity.org/2021/formulas/mathematics/high-school/fd3li4h4oad7rltv6y4zk5h8gqpejsfhp6.png)
![tan\theta=(sin\theta)/(cos\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6i9mrm5pd55zck7on4a2mz9i94staav0wb.png)
We know that
![sin(-\theta)=-sin\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/79c2nkjz0wwmnq1ujn8a7hs132rahdxbdh.png)
![cos(-\theta)=cos\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/cptduo2ea9wwb1vyqgcymeprseauhgkd5g.png)
By using identities
Then, we get
![tan(-\theta)=(-sin\theta)/(cos\theta)=-tan\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/qua8pk8fhmc4vfy7ik1gc08b4ra6iccb0w.png)
![tan(-\theta)=-tan\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/3azfq0ozfuyba85afazr4bvmxgdyskiku8.png)
Odd function: If
![f(-x)=-f(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/luvuc5ujc4vmyfo5ejydrn31wmygjm5g9t.png)
Even function:If
![f(-x)=f(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6clbepyl152s3ap6qypytyva32y4luazt4.png)
![tan(-\theta)=-tan\theta](https://img.qammunity.org/2021/formulas/mathematics/high-school/3azfq0ozfuyba85afazr4bvmxgdyskiku8.png)
Therefore, function is an odd function.