222k views
3 votes
Use your understanding of the symmetry of the sine and cosine functions to determine the value of tan(−theta) for all

real-numbered values of theta. Determine whether the tangent function is even, odd, or neither.

User Firegnom
by
5.3k points

1 Answer

5 votes

Answer:


tan(-\theta)=-tan\theta

Odd function

Explanation:

We are given that


tan(-\theta)

We have to determine the value of
tan(-\theta)and find tangent function is odd,even or neither.


tan(-\theta)=(sin(-\theta))/(cos(-\theta))


tan\theta=(sin\theta)/(cos\theta)

We know that


sin(-\theta)=-sin\theta


cos(-\theta)=cos\theta

By using identities

Then, we get


tan(-\theta)=(-sin\theta)/(cos\theta)=-tan\theta


tan(-\theta)=-tan\theta

Odd function: If
f(-x)=-f(x)

Even function:If
f(-x)=f(x)


tan(-\theta)=-tan\theta

Therefore, function is an odd function.

User Melinath
by
5.4k points