Answer:
Part A:
Margin of error=M≅0.1131
Part B:
Margin of error=M≅0.1404
Part C:
Margin of error=M≅0.1131
Explanation:
The formula for finding the margin of error for the proportion is:
Margin of error=M=

where:
p is the sample proportion =

n is the sample size
Part A:
Margin of error=M=

p=

p=0.2
Margin of error=M=

Margin of error=M≅0.1131
Part B:
p=

p=0.56
Margin of error=M=

Margin of error=M≅0.1404
Part C:
p=

p=0.8
Margin of error=M=

Margin of error=M≅0.1131