Answer:
The value of x , y for given linear equation using elimination is
,
.
Explanation:
Given as :
The two linear equation are
-2 x + 7 y = 12 .............A
3 x + 6 y = 3 .............B
Solving the equation using elimination method
Now, multiply the equation A by 3
i.e 3 × ( - 2 x + 7 y ) = 3 × 12
Or, - 6 x + 21 y = 36 .......C
Again
multiply the equation B by 2
i.e 2 × ( 3 x + 6 y ) = 2 × 3
Or, 6 x + 12 y = 6 .....D
Now, Solving equation C an D
( - 6 x + 21 y ) + ( 6 x + 12 y ) = 36 + 6
Or , ( - 6 x + 6 x ) + ( 21 y + 12 y ) = 42
Or, (0) + (33 y ) = 42
Or, 33 y = 42
∴ y =
![(42)/(33)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/zvy9oj0bvw6ug8rrsys4p64ks4x5fih52p.png)
dividing numerator and denominator by 3
i.e y =
![(14)/(11)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3hb43z4ib4ox3ije7uls8nj2y0yh88gaxm.png)
So, The value of y =
![(14)/(11)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3hb43z4ib4ox3ije7uls8nj2y0yh88gaxm.png)
Now, Put the value of y into eq C
∵ - 6 x + 21 y = 36
Or, - 6 x + 21 ×
= 36
Or, - 6 x +
= 36
Or, - 6 x = 36 -
Or, - 6 x =
Or, - 6 x =
∴ x =
![(102)/(11* (-6))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/z34oowxw110w7ghvx8joq3rwu5nknwggek.png)
i.e x =
So, The value of x =
![(- 17)/(11)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xyxtisxrpdbxc0b2hm7w1foj37yi4e2wup.png)
Hence, The value of x , y for given linear equation using elimination is
,
. Answer