Answer:
![emf=0.1257\ V](https://img.qammunity.org/2021/formulas/physics/college/wjy1r5y1i7fdvlhq6kxprkdwz5j6w5iw1m.png)
Step-by-step explanation:
Given:
- radius of a circular loop,
![r=5\ cm=0.05\ m](https://img.qammunity.org/2021/formulas/physics/college/ew4gfiyfujre798yzyxb7illtbniatoq3q.png)
- initial magnetic flux density,
![B_i=0.1\ Wb.m^(-2)](https://img.qammunity.org/2021/formulas/physics/college/6lmbndcjhhvmjs5ukg79gl5gyrknv90ved.png)
- final magnetic flux density,
![B_f=0.5\ Wb.m^(-2)](https://img.qammunity.org/2021/formulas/physics/college/1mwn9yb321t9linxoadaglh1f0gloqvfac.png)
- time taken for the change in flux density,
![t=0.025\ s](https://img.qammunity.org/2021/formulas/physics/college/mdrusprlqk222k5preq05ogtedfmk8436c.png)
Now using Faraday's Law of induced emf:
............................(1)
Firstly we find the area of the loop:
![A=\pi.r^2](https://img.qammunity.org/2021/formulas/physics/college/4ybg09csjo85vkcfttx77p7d134erttcd0.png)
![A=\pi* 0.05^2](https://img.qammunity.org/2021/formulas/physics/college/iaahgx4xdnxxz71tu8xpaog8hq6q1f23ze.png)
![A=0.0078\ m^2](https://img.qammunity.org/2021/formulas/physics/college/se2spukk2b82ndymx4yqfath2ndwzjz3km.png)
Now putting the respective values in eq. (1):
![emf=((0.5-0.1)* 0.0078)/(0.025)](https://img.qammunity.org/2021/formulas/physics/college/m91dxd7bdrzk4k6r0mowktb8fjc8gsbw01.png)
![emf=0.1257\ V](https://img.qammunity.org/2021/formulas/physics/college/wjy1r5y1i7fdvlhq6kxprkdwz5j6w5iw1m.png)