Answer:
![\delta L\%=22.5\%](https://img.qammunity.org/2021/formulas/physics/college/hitgd97lex4nhmbvp56x93ll2xqizn0l1d.png)
Step-by-step explanation:
Assuming that the thermal expansion of brass cube occurs isotropically (i.e. equal in all the directions).
Given:
- length of the cube,
![l=10\ cm=0.1\ m](https://img.qammunity.org/2021/formulas/physics/college/isgg8d8vm85ohgkwws1dxx2775npi3jk67.png)
- change in temperature of the cube,
![\Deta T=200\^(\circ)C](https://img.qammunity.org/2021/formulas/physics/college/hra27996lylgvt7nnxjd9pdk86twu87ccx.png)
- coefficient of volume expansion,
![\beta=57* 10^(-6)\ ^(\circ)C^(-1)](https://img.qammunity.org/2021/formulas/physics/college/wan3z2i3dtwpvpx3rv9yjj1vkx9bkf90qt.png)
Hence volume of the cube:
![V=10^(-3)\ m^3](https://img.qammunity.org/2021/formulas/physics/college/zrt9do8wiagezn3ertyg6wpklsppotmcs5.png)
Now the volume of the cube after expansion:
![\delta V=V.\beta.\Delta T](https://img.qammunity.org/2021/formulas/physics/college/pqfo9n76rf7b8wkkqkkdyrgffsi7oniekg.png)
![\delta V=10^(-3)* 57* 10^(-6)* 200](https://img.qammunity.org/2021/formulas/physics/college/t19gxr5td95fis1u4mryvw2jym5ft681jt.png)
![\delta V=1.14* 10^(-5)\ m^3](https://img.qammunity.org/2021/formulas/physics/college/qabjbrl0wyjlv2c583gta4h5ghhefrbezl.png)
Therefore,
![\delta L=0.0225\ m](https://img.qammunity.org/2021/formulas/physics/college/jqktavvjodbnpe4lgldux8dl0g1ur5uceh.png)
Now the percentage change in the edges of the cube:
![\delta L\%=(\delta L)/(L) * 100](https://img.qammunity.org/2021/formulas/physics/college/jp89m7zydyh91innyfh3rl26o7bjz37wei.png)
![\delta L\%=(0.0225)/(0.1) * 100](https://img.qammunity.org/2021/formulas/physics/college/f5tymkx2sg4bf75smlp9rl2g0dprtvpidw.png)
![\delta L\%=22.5\%](https://img.qammunity.org/2021/formulas/physics/college/hitgd97lex4nhmbvp56x93ll2xqizn0l1d.png)