Answer:
Step-by-step explanation:
Given
length of cubical box
![h=0.3 m](https://img.qammunity.org/2021/formulas/physics/college/f8t1bnb14ot93x0d0t2r9j3jfuw7piuq0k.png)
If density of object
and density of lake liquid
![\rho _l](https://img.qammunity.org/2021/formulas/physics/college/rl7o2wu7zwulmy62dn9l0i3iw901muoqlp.png)
when it is in equilibrium one-third of its height
Buoyancy force will be equal to weight of cubical box
![\rho * h^3* g=\rho _l* h^2* (h)/(3)* g](https://img.qammunity.org/2021/formulas/physics/college/fg1bia1i54sholp6y4xuxbmo5mcir221sy.png)
therefore
![(\rho _o)/(\rho _w)=(1)/(3)](https://img.qammunity.org/2021/formulas/physics/college/znphu1ox3njsmcjv5cqa5aukorpjf9grdu.png)
When water start Pouring in it then height of liquid at which box started to sink
Let H be that height
![\rho * h^3* g+\rho * h^2* H* g=\rho _l* h^2* h* g](https://img.qammunity.org/2021/formulas/physics/college/ekm3axj2soy809ljh9pq51seb2j5acpi4v.png)
cancel out the common terms and divide by density of lake
![(\rho _o)/(\rho _l)* h+H=h](https://img.qammunity.org/2021/formulas/physics/college/dty41dhfxo708ooio5tgjkeikbzynzta4v.png)
![H=h-(h)/(3)=(2)/(3)h](https://img.qammunity.org/2021/formulas/physics/college/1wxlpb5m3v1nc4517odis11fzn404bl032.png)