19.7k views
4 votes
A molecule has a rotational inertis of 14,000 u.pm^2 and

isspinning at an angular speed of 4.3 X 10^12 rad/s.
a.) Express the rotational inertia in kg.m^2.
b.) Calculate the rotational kinetic energy
inelectron-volts.

1 Answer

6 votes

Answer:

(a)
I=2.33* 10^(-47)\ kg-m^2

(b)
K=1.3* 10^(-3)\ eV

Step-by-step explanation:

It is given that,

The rotational inertia of a molecule,
I=14000\ upm^2

Angular velocity of the molecule,
\omega=4.3* 10^(12)\ rad/s

(a) The molecular weight of a molecule is measured in amu or u.


1\ amu=1.67* 10^(-27)\ kg


1 pm=10^(-12)\ m

The rotational inertia of the molecule,


I=14000* 1.67* 10^(-27)* (10^(-12))^2


I=2.33* 10^(-47)\ kg-m^2

(b) The rotational kinetic energy of the molecule is given by :


K=(1)/(2)I\omega^2


K=(1)/(2)* 2.33* 10^(-47)* (4.3* 10^(12))^2


K=2.15* 10^(-22)\ J

Since,
1\ eV=1.6* 10^(-19)\ J

So,
K=1.3* 10^(-3)\ eV

Hence, this is the required solution.

User Jobayer
by
5.6k points