Answer:
(a) In the direction of velocity
(b) E = - 639.84 N/C
Solution:
As per the question:
Speed of the electron,
= 0.1% c
where
c =
![3* 10^(8)\ m/s](https://img.qammunity.org/2021/formulas/physics/college/n7grdt2ctgl89y82kcg0mta2yq1hv3zvae.png)
Thus
![v_(e) = 3* 10^(6)\ m/s](https://img.qammunity.org/2021/formulas/physics/college/evhuqn0znkt75a5h7pa57hdd0d49dwn76i.png)
Distance, x = 4.0 cm
Now,
(a) The direction of the electric field is the same as that of the velocity.
(b) The electric field strength can be calculated as:
By Kinematics eqn:
![v'^(2) = v_(e)^(2) + 2ax](https://img.qammunity.org/2021/formulas/physics/college/uvglzr81tv53f2hqcsivq0nqnvhvq18eve.png)
![a = -1.125* 10^(14)\ m/s^(2)](https://img.qammunity.org/2021/formulas/physics/college/bmaacpizuutx23vezrr21kxzclgcijv185.png)
Electric field strength can be calculated as:
![E = (F)/(q)](https://img.qammunity.org/2021/formulas/physics/college/mqmeazu833cr7m1xy36247355dwm2o3nzg.png)
Also,
F = ma
m = mass of electron =
![9.1* 10^(- 31)\ kg](https://img.qammunity.org/2021/formulas/physics/college/vmz5a7eqd2gybg9uaurix7zof97etjssol.png)
q = charge on electron =
Thus
![E = (ma)/(q) = (9.1* 10^(- 31)* - 1.125* 10^(14))/(1.6* 10^(- 19))](https://img.qammunity.org/2021/formulas/physics/college/iohd0fj5mp9v5or3jxtntopqpr9tltcnsg.png)
E = - 639.84 N/C