Answer:
a α = 6.54 rad / s², b t = 4.81 s , c t = 9.62 s , d θ = 48.12 rev
Step-by-step explanation:
We can solve this exercise using angular kinematics
Let's reduce the magnitudes to the SI system
w₀ = 10 rev / s (2π rad / 1 rev) = 20π rad / s
= 15 rev / s = 30π rad / s
θ = 60 rev (2π rad / 1rev) = 120π rad
a)
² = w₀² + 2 α θ
α = (wf² - w₀²) / 2 θ
α = (30²pi² - 20² pi²) / 2 120 pi
α = 2.08π rad / s²
α = 6.54 rad / s²
b)
= w₀ + α t
t = (
- w₀) / α
t = (30π -20ππ) /2.08π
t = 4.81 s
c) the time to reach the speed of wf = 20pi rad / s from rest w₀ = 0
t = (20π -0) /2.08π
t = 9.62 s
d) the revolutions to reach this speed
θ = w₀ t + ½ alf t²
θ = ½ 2.08 pi 9.62²
θ = 302.37 rad
Let's reduce to revolutions
θ = 302.37 rad (1 rev / 2pi rad)
θ = 48.12 rev