37.9k views
1 vote
If X and Y are independent continuous positive random

variables,express the density function of (a) Z=X/Y and (b) Z=XY in
terms ofthe density functions of X and Y. Evaluate these
expressions in thespecial case where X and Y are both exponential
randomvariables.

1 Answer

6 votes

a)
Z=\frac XY has CDF


F_Z(z)=P(Z\le z)=P(X\le Yz)=\displaystyle\int_{\mathrm{supp}(Y)}P(X\le yz\mid Y=y)P(Y=y)\,\mathrm dy


F_Z(z)\displaystyle=\int_{\mathrm{supp}(Y)}P(X\le yz)P(Y=y)\,\mathrm dy

where the last equality follows from independence of
X,Y. In terms of the distribution and density functions of
X,Y, this is


F_Z(z)=\displaystyle\int_{\mathrm{supp}(Y)}F_X(yz)f_Y(y)\,\mathrm dy

Then the density is obtained by differentiating with respect to
z,


f_Z(z)=\displaystyle(\mathrm d)/(\mathrm dz)\int_{\mathrm{supp}(Y)}F_X(yz)f_Y(y)\,\mathrm dy=\int_{\mathrm{supp}(Y)}yf_X(yz)f_Y(y)\,\mathrm dy

b)
Z=XY can be computed in the same way; it has CDF


F_Z(z)=P\left(X\le\frac zY\right)=\displaystyle\int_{\mathrm{supp}(Y)}P\left(X\le\frac zy\right)P(Y=y)\,\mathrm dy


F_Z(z)\displaystyle=\int_{\mathrm{supp}(Y)}F_X\left(\frac zy\right)f_Y(y)\,\mathrm dy

Differentiating gives the associated PDF,


f_Z(z)=\displaystyle\int_{\mathrm{supp}(Y)}\frac1yf_X\left(\frac zy\right)f_Y(y)\,\mathrm dy

Assuming
X\sim\mathrm{Exp}(\lambda_x) and
Y\sim\mathrm{Exp}(\lambda_y), we have


f_(Z=\frac XY)(z)=\displaystyle\int_0^\infty y(\lambda_xe^(-\lambda_xyz))(\lambda_ye^(\lambda_yz))\,\mathrm dy


\implies f_(Z=\frac XY)(z)=\begin{cases}(\lambda_x\lambda_y)/((\lambda_xz+\lambda_y)^2)&\text{for }z\ge0\\0&\text{otherwise}\end{cases}

and


f_(Z=XY)(z)=\displaystyle\int_0^\infty\frac1y(\lambda_xe^(-\lambda_xyz))(\lambda_ye^(\lambda_yz))\,\mathrm dy


\implies f_(Z=XY)(z)=\lambda_x\lambda_y\displaystyle\int_0^\infty\frac{e^(-\lambda_x\frac zy-\lambda_yy)}y\,\mathrm dy

I wouldn't worry about evaluating this integral any further unless you know about the Bessel functions.

User Webghost
by
6.7k points