37.9k views
1 vote
If X and Y are independent continuous positive random

variables,express the density function of (a) Z=X/Y and (b) Z=XY in
terms ofthe density functions of X and Y. Evaluate these
expressions in thespecial case where X and Y are both exponential
randomvariables.

1 Answer

6 votes

a)
Z=\frac XY has CDF


F_Z(z)=P(Z\le z)=P(X\le Yz)=\displaystyle\int_{\mathrm{supp}(Y)}P(X\le yz\mid Y=y)P(Y=y)\,\mathrm dy


F_Z(z)\displaystyle=\int_{\mathrm{supp}(Y)}P(X\le yz)P(Y=y)\,\mathrm dy

where the last equality follows from independence of
X,Y. In terms of the distribution and density functions of
X,Y, this is


F_Z(z)=\displaystyle\int_{\mathrm{supp}(Y)}F_X(yz)f_Y(y)\,\mathrm dy

Then the density is obtained by differentiating with respect to
z,


f_Z(z)=\displaystyle(\mathrm d)/(\mathrm dz)\int_{\mathrm{supp}(Y)}F_X(yz)f_Y(y)\,\mathrm dy=\int_{\mathrm{supp}(Y)}yf_X(yz)f_Y(y)\,\mathrm dy

b)
Z=XY can be computed in the same way; it has CDF


F_Z(z)=P\left(X\le\frac zY\right)=\displaystyle\int_{\mathrm{supp}(Y)}P\left(X\le\frac zy\right)P(Y=y)\,\mathrm dy


F_Z(z)\displaystyle=\int_{\mathrm{supp}(Y)}F_X\left(\frac zy\right)f_Y(y)\,\mathrm dy

Differentiating gives the associated PDF,


f_Z(z)=\displaystyle\int_{\mathrm{supp}(Y)}\frac1yf_X\left(\frac zy\right)f_Y(y)\,\mathrm dy

Assuming
X\sim\mathrm{Exp}(\lambda_x) and
Y\sim\mathrm{Exp}(\lambda_y), we have


f_(Z=\frac XY)(z)=\displaystyle\int_0^\infty y(\lambda_xe^(-\lambda_xyz))(\lambda_ye^(\lambda_yz))\,\mathrm dy


\implies f_(Z=\frac XY)(z)=\begin{cases}(\lambda_x\lambda_y)/((\lambda_xz+\lambda_y)^2)&\text{for }z\ge0\\0&\text{otherwise}\end{cases}

and


f_(Z=XY)(z)=\displaystyle\int_0^\infty\frac1y(\lambda_xe^(-\lambda_xyz))(\lambda_ye^(\lambda_yz))\,\mathrm dy


\implies f_(Z=XY)(z)=\lambda_x\lambda_y\displaystyle\int_0^\infty\frac{e^(-\lambda_x\frac zy-\lambda_yy)}y\,\mathrm dy

I wouldn't worry about evaluating this integral any further unless you know about the Bessel functions.

User Webghost
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories