Answer:
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)
Explanation:
d²y/dx² = (-2y² − x²) / (4y³)
Take the derivative (use quotient rule and chain rule):
d³y/dx³ = [ (4y³) (-4y dy/dx − 2x) − (-2y² − x²) (12y² dy/dx) ] / (4y³)²
d³y/dx³ = [ (-16y⁴ dy/dx − 8xy³ − (-24y⁴ dy/dx − 12x²y² dy/dx) ] / (16y⁶)
d³y/dx³ = (-16y⁴ dy/dx − 8xy³ + 24y⁴ dy/dx + 12x²y² dy/dx) / (16y⁶)
d³y/dx³ = ((8y⁴ + 12x²y²) dy/dx − 8xy³) / (16y⁶)
d³y/dx³ = ((2y² + 3x²) dy/dx − 2xy) / (4y⁴)
Substitute:
d³y/dx³ = ((2y² + 3x²) (-x / (2y)) − 2xy) / (4y⁴)
d³y/dx³ = ((2y² + 3x²) (-x) − 4xy²) / (8y⁵)
d³y/dx³ = (-2xy² − 3x³ − 4xy²) / (8y⁵)