Answer:
![V =(32)/(3)\pi](https://img.qammunity.org/2021/formulas/mathematics/college/q7saz64qa32fc1jvsmtfnrbfahp9y2tvws.png)
Explanation:
given,
radius of sphere = 3
volume of cone:
![V = (1)/(3)\pi r^2h](https://img.qammunity.org/2021/formulas/mathematics/college/bk8hcg5j79tczfzozjlsmnmdpgj8ndenvo.png)
r is the radius of circular base
h is the height of the cone
here r = x and h = 3 + y
now, volume in term of x and y
![V = (1)/(3)\pi x^2(3+y)](https://img.qammunity.org/2021/formulas/mathematics/college/x7bdr7uc70jfeq0r3l938fdlohhpovnhvg.png)
Applying Pythagoras theorem
x² + y² = 3²
![V = (1)/(3)\pi ( √(9-y^2))^2(3+y)](https://img.qammunity.org/2021/formulas/mathematics/college/6wdzwj2xavov6cfgxvto2i86ue295vwdes.png)
![V = (1)/(3)\pi ( 9-y^2)(3+y)](https://img.qammunity.org/2021/formulas/mathematics/college/xp8jthrksc85z7chk8v4ze5acj3k5g9ffa.png)
![V = (1)/(3)\pi (27 + 9 y - 3 y^2-y^3)](https://img.qammunity.org/2021/formulas/mathematics/college/dcfkejwylfvhnrxshfipxqb0ayutum5vqj.png)
differentiating both side
![(dV)/(dy) =(1)/(3)\pi ( 9-6y- 3y^2)](https://img.qammunity.org/2021/formulas/mathematics/college/26dr6bnnmzz9rs18hl68ivpbs9r53isfgs.png)
for maxima
![(dV)/(dy) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/tmzbbgs9tcreqt66mko0t7to2l125xvlry.png)
![\pi ( 3-2 y - y^2)=0](https://img.qammunity.org/2021/formulas/mathematics/college/108nxz4hco6b0216wjs7r4xoj5iq2025an.png)
y² + 2 y - 3 = 0
(y+3)(y-1)=0
y = 1,-3
y cannot be negative so, volume at y = 1
![V = (1)/(3)\pi (27 + 9 (1)- 3(1)^2-(1)^3)](https://img.qammunity.org/2021/formulas/mathematics/college/ibm153oesg4gxqh7f9el0yzau003huwf6o.png)
![V =(32)/(3)\pi](https://img.qammunity.org/2021/formulas/mathematics/college/q7saz64qa32fc1jvsmtfnrbfahp9y2tvws.png)
Hence, the largest cone which can be inscribed in the spheres of the radius 3 has volume
![V =(32)/(3)\pi](https://img.qammunity.org/2021/formulas/mathematics/college/q7saz64qa32fc1jvsmtfnrbfahp9y2tvws.png)