Answer:
45 feet
Explanation:
Let x be the distance of Stephanie from the point on the ground
Height of kite=
![2x-11](https://img.qammunity.org/2021/formulas/mathematics/college/vqchavdvpvj3oybsjj6odqk03z60ioj12n.png)
Length of string=53 feet
Pythagoras theorem
![(Hypotenuse)^2=(Base)^2+(Perpendiculars\;side)^2](https://img.qammunity.org/2021/formulas/mathematics/college/be7zl6xjej4nscfl7swao0we86iant6jgl.png)
By using Pythagoras theorem
![AC^2=AB^2+BC^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nzodcaves3d5cn49k90or16rezpprecaag.png)
![(53)^2=x^2+(2x-11)^2](https://img.qammunity.org/2021/formulas/mathematics/college/m3sz5717m1m8kk167rjh69kbihbfj0n1iv.png)
![x^2+4x^2+121-44x=2809](https://img.qammunity.org/2021/formulas/mathematics/college/3u7x0ce3druhgm5pdvf3ego4ml3g2cycss.png)
![5x^2-44x+121-2809=0](https://img.qammunity.org/2021/formulas/mathematics/college/m9ttso3xglx9hpluann1brh31f9iwgtou6.png)
![5x^2-44x-2688=0](https://img.qammunity.org/2021/formulas/mathematics/college/yh6z9ttji1dwroq4l2skv35k7j7zvktbm6.png)
![5x^2-140x+96x-2688=0](https://img.qammunity.org/2021/formulas/mathematics/college/bds7l1fex7aod27iur2egatsogjldu7gii.png)
![5x(x-28)+96(x-28)=0](https://img.qammunity.org/2021/formulas/mathematics/college/weooz088ddlkxcrvnk94a37785wcr1gc6j.png)
![(x-28)(5x+96)=0](https://img.qammunity.org/2021/formulas/mathematics/college/59js9g3dedva7rnmtdpkd03klzx0b3d08d.png)
![x-28=0\implies x=28](https://img.qammunity.org/2021/formulas/mathematics/college/kmy30gkjpyagadvmcszh8kaevkp6qvdvks.png)
![5x+96=0](https://img.qammunity.org/2021/formulas/mathematics/college/a3okksmync769cirngftjte5pasdbh6n46.png)
![5x=-96](https://img.qammunity.org/2021/formulas/mathematics/college/tqkbhnb291w1lrzki8mwu4thcbwwz19u46.png)
![x=-(96)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/esnfsdqn373kjxxsiu5h32lz8yv3geo7og.png)
It is not possible because distance cannot be negative.
x=28 feet
Substitute the value of x
Height of kite above the ground=2(28)-11=45 feet
Therefore,height of kite from the ground=45 feet