Answer: 586.59 cubic centimeters .
Explanation:
As per given . we have
Inner diameter = 1.8 inches
⇒Inner radius :r = 0.9 in. (radius is half of diameter)
= 0.9 x (2.54) = 2.286 cm [∵ 1 in . = 2.54 cm]
Outer diameter = 2 inches
⇒Outer radius : R = 1 inch = 2.54 cm
Height : h = 5 feet = 5 x(30.48) = 152.4 cm [∵ 1 foot = 30.48 cm]
The formula to find the volume of a hollow cylinder :
, where R= outer radius , r= inner radius and h= height.
Now , the volume of metal in the conduit :
![V=(3.14)(( 2.54)^2-(2.286)^2)(152.4)](https://img.qammunity.org/2021/formulas/mathematics/college/k1hwmgv8tnatbxw2b75vcqhy61xv5d8nqx.png)
![V=(3.14)(6.4516-5.225796)(152.4)](https://img.qammunity.org/2021/formulas/mathematics/college/4lse74sg2g8o6thj8qqt2wnbsx9z4t1hxm.png)
![V=(3.14)(1.225804)(152.4)](https://img.qammunity.org/2021/formulas/mathematics/college/47r6gucefms2h4wf1g0gm29vpxvbv6fams.png)
![V=586.591342944\approx586.59\ cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/1cb9thgxawporl1gjf8tonkzpu5nq5cbto.png)
Hence, the volume of metal in the conduit is 586.59 cubic centimeters .