17.1k views
4 votes
Evaluate by using the Fundamental Theorem of Calculus. The

integral(1 + 3y - y2)dy from 0 to 4. Round to tenths.

1 Answer

4 votes

Answer:


\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = (20)/(3)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Calculus

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = \int\limits^4_0 {} \, dy + \int\limits^4_0 {3y} \, dy - \int\limits^4_0 {y^2} \, dy
  2. [2nd Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = \int\limits^4_0 {} \, dy + 3\int\limits^4_0 {y} \, dy - \int\limits^4_0 {y^2} \, dy
  3. [Integrals] Reverse Power Rule:
    \displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = y \bigg| \limits^4_0 + 3((y^2)/(2)) \bigg| \limits^4_0 - ((y^3)/(3)) \bigg| \limits^4_0
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = 4 + 3(8) - (64)/(3)
  5. Simplify:
    \displaystyle \int\limits^4_0 {(1 + 3y - y^2)} \, dy = (20)/(3)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Ian Medeiros
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories