Answer:
Proof in explanation.
Explanation:
![(1)/(\sec(x)-1)+(1)/(\sec(x)+1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ev9u2bq3z8t2f6ksjdn933wqsjk2a64t4h.png)
I'm going to find a way to combine the fractions as one.
Multiply the first fraction by
and multiply the second fraction by
.
![(\sec(x)-1)/((\sec(x)-1)(\sec(x)+1))+(\sec(x)+1)/((\sec(x)+1)(\sec(x)-1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/yyfo0oprn3u3b61r3gy8zf94h5b1cuw99o.png)
![(\sec(x)-1+\sec(x)+1)/((\sec(x)+1)(\sec(x)-1))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nt3dc9kr1g2rjzzht9ndngq1ky5bl8pzka.png)
The bottom product can easily be determine since when multiplying the conjugate of
which
, we only have to multiply first terms and then last terms giving us
.
![(2\sec(x))/(\sec^2(x)-1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ho3jmwzp8frivqjhzdct5ntfgmjztihn30.png)
Recall the Pythagorean Identity:
![1+\tan^2(x)=\sec^2(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/lxl6xucgtt0sw6x16oittsjldjcey9ka02.png)
So I can replace
with
:
![(2\sec(x))/(\tan^2(x))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kd5ibded96lccfaipj1nvwgiulppoy4f8h.png)
![2\sec(x) \cdot (1)/(\tan^2(x))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/wapr9i1ydduxtv5mgzjg2jrfe310a7wa1o.png)
![2\sec(x) \cdot (\cos^2(x))/(\sin^2(x))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/i4xenkkp0ewjhs9b98b3yaesr8ejn5v4zr.png)
![2 \sec(x) \cos(x) \cos(x) (1)/(\sin^2(x))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/t4ostvyzdj36g3v3s2zgu2rc47mbze7q4w.png)
![2 (\sec(x) \cos(x)) \cos(x) (1)/(\sin^2(x))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7ua0r59ogrh1cosj6ngwbgdf07wu0wq76j.png)
![2(1)\cos(x)\csc^2(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/s5vjwaeqmdgkgsf7lc5oj753a39umj46on.png)
![2\cos(x)\csc^2(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/374et7cqxwu7iu50fc832dv34wdlchvwja.png)