200k views
1 vote
Factor each by factoring out the greatest common factor:

1. 10ab+5a
2. 3(????^3)ℎ−9(????^2)ℎ+12ℎ
3. 6(x^2)(y^3)+9x(y^4)+18y^5

1 Answer

2 votes

Answer:

1. Given expression,


10ab + 5a

∵ 10ab = 2 × 5 × a × b,

5a = 5 × a

So, GCF(10ab, 5a) = 5a,

We can write,


10ab + 5a=5a* 2b + 5a = 5a(2b+1)

2. Given expression,


3(x^3)h-9(x^2)h+12h

∵ 3(x³)h= 3 × x × x × x × h,

9(x²)h = 3 × 3 × x × x × h

12h = 2 × 2 × 3 × h

So, GCF(3(x³)h, 9(x²)h, 12h ) = 3h,

We can write,


3(x^3)h-9(x^2)h+12h=3h* x^3 - 3h* 3x^2+3h* 4= 3h(x^3-3x^2+4)

3. Given expression,


6(x^2)(y^3)+9x(y^4)+18y^5

∵ 6(x²)(y³) = 2 × 3 × x × x × y × y × y,


9x(y^4) = 3 × 3 × x × y × y × y × y


18y^5 = 2 × 3 × 3 × y × y × y × y × y

So, GCF(
6(x^2)(y^3),9x(y^4), 18y^5) = 3y³,

We can write,


6(x^2)(y^3)+9x(y^4)+18y^5=3y^3* 2x^2 + 3y^3* 3xy+3y^3* 6y^2 = 3y^3(2x^2+3xy+6y^2)

User Torlack
by
4.2k points