111k views
1 vote
the sum of the 3rd and 7th term of an A.P is 6, the product is 8, find the sum of the first 16 terms of the sequence​

User Mnuzzo
by
3.5k points

1 Answer

7 votes

For starter, recall that an arithmetic progression
\{a_n\}_(n\ge1) is given recursively by


\begin{cases}a_1=a\\a_n=a_(n-1)+d&\text{for }n>1\end{cases}

We can solve this explicitly for
a_n in terms of
a_1:


a_n=a_(n-1)+d


a_n=(a_(n-2)+d)+d=a_(n-2)+2d


a_n=(a_(n-3)+d)+d=a_(n-3)+3d

and so on, down to


a_n=a_1+(n-1)d

More generally, we can express
a_n in terms of an arbitrary term
a_k:


a_n=a_k+(n-k)d

(notice how the index of
a_k and the coefficient of
d on the right side add to
n)

Let
a_n be the
n-th term of this particular progression. We're given


\begin{cases}a_3+a_7=6\\a_3a_7=8\end{cases}

from which it follows that


a_7=\frac8{a_3}\implies a_3+\frac8{a_3}=6


\implies{a_3}^2-6a_3+8=(a_3-4)(a_3-2)=0\implies a_3=4\text{ or }a_3=2


\implies a_7=2\text{ or }a_7=4

If
a_3=4, it follows that


a_7=a_3+(7-3)d\implies2=4+4d\implies d=-\frac12

Otherwise, if
a_3=2, then


4=2+(7-3)d\implies2=4d\implies d=\frac12

The sum of the first
k terms of an arithmetic progression
\{a_n\}_(n\ge1) is


S_k=\displaystyle\sum_(n=1)^ka_n=\sum_(n=1)^k(a_1+(n-1)d)=ka_1+d\frac{k(k-1)}2

If
a_3=4, then


a_1=a_3+(1-3)d\implies a_1=5

so that


S_(16)=16\cdot5-\frac12\frac{16\cdot15}2=20

Otherwise, if
a_3=2, then


a_1=a_3+(3-1)d\implies a_1=1

so that


S_(16)=16\cdot1+\frac12\frac{16\cdot15}2=76

User Heliotrope
by
3.8k points