47.8k views
1 vote
Rewrite each expression by completing the square.

1. −2x^2 + 8x + 5
2. 2.5????^2 − 7.5???? + 1.25
3. 4 / 3????^2 + 6???? − 5
4. 1000c^2 − 1250c + 695
5. 8n^2 + 2n + 5

User Balthazar
by
5.2k points

1 Answer

5 votes

Answer:

1)
x^2 -4x +((4)/(2))^2 -(5)/(2) - ((4)/(2))^2


(x-2)^2 -(5)/(2) -4=(x-2)^2 -(13)/(2)

2)
x^2 -3x +((3)/(2))^2 +(1)/(2) - ((3)/(2))^2


(x-(3)/(2))^2 +(1)/(2) -(9)/(4)=(x-(3)/(2))^2 -(7)/(4)

3)
x^2 +(9)/(2)x +((9)/(4))^2 -(15)/(4) - ((9)/(4))^2


(x+(9)/(4))^2 -(15)/(4) -(81)/(16)=(x+(9)/(4))^2 -(141)/(16)

4)
c^2 -(5)/(4)c +((5)/(8))^2 -(139)/(200) - ((5)/(8))^2


(c-(5)/(8))^2 -(139)/(200) -(25)/(64)=(c-(5)/(8))^2 -(1737)/(1600)

5)
n^2 +(1)/(4)n +((1)/(8))^2 +(5)/(8) - ((1)/(8))^2


(n+(1)/(8))^2 +(5)/(8) -(1)/(64)=(n+(1)/(8))^2 +(39)/(64)

Explanation:

1. −2x^2 + 8x + 5

For this case we can begin dividing all the terms by -2 and we got:


x^2 -4x -(5)/(2)[/tex</p><p>And if we complete the square we got:</p><p>[tex] x^2 -4x +((4)/(2))^2 -(5)/(2) - ((4)/(2))^2


(x-2)^2 -(5)/(2) -4=(x-2)^2 -(13)/(2)

2. 2.5x^2 − 7.5x + 1.25

For this case we can begin dividing all the terms by 2.5 and we got:


x^2 -3x + (1)/(2)

And if we complete the square we got:


x^2 -3x +((3)/(2))^2 +(1)/(2) - ((3)/(2))^2


(x-(3)/(2))^2 +(1)/(2) -(9)/(4)=(x-(3)/(2))^2 -(7)/(4)

3. 4 / 3x ^2 + 6x − 5

For this case we can begin dividing all the terms by 4/3 and we got:


x^2 + (9)/(2)x - (15)/(4)

And if we complete the square we got:


x^2 +(9)/(2)x +((9)/(4))^2 -(15)/(4) - ((9)/(4))^2


(x+(9)/(4))^2 -(15)/(4) -(81)/(16)=(x+(9)/(4))^2 -(141)/(16)

4. 1000c^2 − 1250c + 695

For this case we can begin dividing all the terms by 1000 and we got:


c^2 - (5)/(4)c + (139)/(200)

And if we complete the square we got:


c^2 -(5)/(4)c +((5)/(8))^2 +(139)/(200) - ((5)/(8))^2


(c-(5)/(8))^2 -(139)/(200) -(25)/(64)=(c-(5)/(8))^2 -(487)/(1600)

5. 8n^2 + 2n + 5

For this case we can begin dividing all the terms by 8 and we got:


n^2 + (1)/(4)x + (5)/(8)

And if we complete the square we got:


n^2 +(1)/(4)n +((1)/(8))^2 +(5)/(8) - ((1)/(8))^2


(n+(1)/(8))^2 +(5)/(8) -(1)/(64)=(n+(1)/(8))^2 +(39)/(64)