Answer:
. It means AC is perpendicular to AB.
Explanation:
Vertices of given triangle are A(−2, −2), B(5, −2), and C(−2,22).
Distance formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ykj4vnimechxgkuvrtfa2qltyc73jt9g88.png)
Using distance formula we get
![AB=√((5-(-2))^2+(-2-(-2))^2)=√(7^2)=7](https://img.qammunity.org/2021/formulas/mathematics/high-school/4d4izzzonmwsa9zvv5g81uh4lzbcw2wy7a.png)
![BC=√((-2-5)^2+(22-(-2))^2)=√(7^2+24^2)=√(625)=25](https://img.qammunity.org/2021/formulas/mathematics/high-school/fiemd0qa7u4qd0r74dy943udl49fwz1idc.png)
![AC=√((-2-(-2))^2+(22-(-2))^2)=√(24^2)=24](https://img.qammunity.org/2021/formulas/mathematics/high-school/gja46qnxwrxvqubjbo9n5to6tf2eryahdg.png)
According to Pythagoras theorem
![hypotenuse^2=perpendicular^2+base^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/uh4ldkbl5hmd68ez2z3zzs4bjlbpdy1vqx.png)
![(BC)^2=(AC)^2+(AB)^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/yo5k3l1owf6g2fumncjhhqck66fo5ppjyy.png)
Perpendicular = AC
Base = AB
It means AC is perpendicular to AB.
Hence proved.