205k views
3 votes
Prove using the Pythagorean theorem that AC is perpendicular to AB given points ????(−2, −2), ????(5, −2), and

????(−2,22).

1 Answer

2 votes

Answer:


(BC)^2=(AC)^2+(AB)^2. It means AC is perpendicular to AB.

Explanation:

Vertices of given triangle are A(−2, −2), B(5, −2), and C(−2,22).

Distance formula:


d=√((x_2-x_1)^2+(y_2-y_1)^2)

Using distance formula we get


AB=√((5-(-2))^2+(-2-(-2))^2)=√(7^2)=7


BC=√((-2-5)^2+(22-(-2))^2)=√(7^2+24^2)=√(625)=25


AC=√((-2-(-2))^2+(22-(-2))^2)=√(24^2)=24

According to Pythagoras theorem


hypotenuse^2=perpendicular^2+base^2


(BC)^2=(AC)^2+(AB)^2

Perpendicular = AC

Base = AB

It means AC is perpendicular to AB.

Hence proved.

User Walta
by
5.2k points