38.1k views
0 votes
Show that sin(3x) = 3sin(x)cos2(x) − sin3(x). (Hint: Use sin(2x) = 2sin(x)cos(x) and the sine sum formula.)

1 Answer

3 votes

Explanation:

To prove:


\sin 3x=3\sin x\cos^2 x-\sin^3x

Identities used:


\sin(A+B)=\sin A\cos B+\cos A\sin B ......(1)


\sin 2A=2\sin A\cos A ........(2)


\cos 2A=\cos^2A-\sin^2 A .......(3)

Taking the LHS:


\Rightarrow \sin 3x=\sin (x+2x)

Using identity 1:


\Rightarrow \sin (x+2x)=\sin x\cos 2x+\cos x\sin 2x

Using identities 2 and 3:


\Rightarrow \sin x(\cos ^2x-\sin^2 x)+\cos x(2\sin x\cos x)\\\\\Rightarrow \sin x\cos^2x-\sin^3x+2\sin x\cos^2x\\\\\Rightarrow 3\sin x\cos^2x-\sin^3x

As, LHS = RHS

Hence proved

User Nate Reed
by
4.5k points